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SUMMARY 

This paper presents a p-version least squares finite element formulation (LSFEF) for two-dimensional, 
incompressible, non-Newtonian fluid flow under isothermal and non-isothermal conditions. The 
dimensionless forms of the differential equations describing the fluid motion and heat transfer are cast 
into a set of first-order differential equations using nowNewtonian stresses and heat fluxes as auxiliary 
variables. The velocities, pressure and temperature as well as the stresses and heat fluxes are interpolated 
using equal-order, Co-continuous, p-version hierarchical approximation functions. The application of 
least squares minimization to the set of coupled first-order non-linear partial differential equations 
results in finding a solution vector { h }  which makes the partial derivatives of the error functional 
with respect to ( 6 )  a null vector. This is accomplished by using Newton’s method with a line 
search. 

The paper presents the implementation of a power-law model for the non-Newtonian Viscosity. For 
the non-isothermal case the fluid properties are considered to be a function of temperature. Three 
numerical examples (fully developed flow between parallel plates, symmetric sudden expansion and 
lid-driven cavity) are presented for isothermal power-law fluid flow. The Couette shear flow problem and 
the 4: 1 symmetric sudden expansion are used to present numerical results for non-isothermal power-law 
fluid flow. The numerical examples demonstrate the convergence characteristics and accuracy of the 
formulation. 

KEY WORDS Least squares Finite element p-version Error functional Power-law-fluid Non-isothermal 
Degrees of freedom p-convergence Hierarchical Newton’s method Line search 

INTRODUCTION 

The finite element method has been proven to be a powerful tool in the solution of a variety of 
fluid flow problems. The majority of published finite element formulations are based on either 
variational or weighted residual methods. Variational methods produce the ‘best’ approximation 
to the exact solution of the associated variational problem. However, the variational principle 
in general cannot be constructed for systems described by non-linear partial differential 
equations. Galerkin methods, collocation and least squares methods are possible alternatives 
and are special cases of the general weighted residual method. Galerkin-based formulations of 
the steady incompressible Navier-Stokes equations in primitive variables (P, u, v )  lead to several 

* Author to whom correspondence should be addressed. 

027 1-2091/94/020 127-36$23.00 
0 1994 by John Wiley & Sons, Ltd. 

Received 16 June 1992 
Revised 29 July I993 



128 B. C. BELL AND K.  S. SURANA 

well-known difficulties. Special procedures for circumventing these difficulties have been 
investigated and are reported in the 

The least squares finite element method has been advocated as a unified method for fluid 
dynamics applications7 and satisfies the criteria desirable in variational methods.8 The least 
squares finite element method has been applied to el lip ti^,^ hyperbolic" and mixed" partial 
differential equations. Applications include boundary layer flow," gas dynamics,' Stokes 
flow,14 inviscid compressible flow,' 
p-Version-based finite element formulations provide superior convergence behaviour over 
h-version-based elements," yet the majority of CFD finite element research has been con- 
centrated on the use of low-order element approximations. Jiang and Sonnad' formulated 
p-version least squares finite elements for two-dimensional, incompressible fluid flow using 
the pressure-velocity-vorticity approach and Legendre polynomials. Winterscheidt and 
Surana'*20*21 have presented p-version least squares formulations for Burgers' equation, convec- 
tion4iffusion and two-dimensional, incompressible Newtonian flow. In these formulations the 
describing equations were cast into a series of first-order equations (by introducing auxiliary 
variables) for which the least squares finite element formulation was constructed using equal- 
order, Co-continuous, p-version hierarchical approximation functions for both primary and 
auxiliary variables. 

It is the purpose of this paper to develop a p-version finite element framework based on the 
least squares approach for the solution of problems involving non-Newtonian fluids, specifically 
fluids described by generalized Newtonian models. The flow of an incompressible Newtonian 
fluid is described by Navier-Stokes equations in which the only non-linear terms are the 
convection terms in the momentum equations. The viscosity of a non-Newtonian fluid is a 
function of the flow field parameters. As a result, an additional source of non-linearity is 
introduced into the system of equations describing the flow. It has been reported that for 
generalized Newtonian fluid models this additional non-linearity can result in lack of con- 
vergence or extremely slow convergence of the iterative solution These investi- 
gations show the importance of the solution procedure, while other studies have concentrated 
on adaptive mesh refinement  technique^.^^^^^ The extent of additional difficulties encountered 
in the solution of non-Newtonian fluid flow problems may also be influenced by the particular 
finite element formulation. 

Both Galerkin and penalty finite element formulations have been ~ s e d ~ ~ * ~ ~ * ~ ~  in the solution 
of Newtonian as well as non-Newtonian fluid flow problems. The disadvantages of these methods 
are that they produce non-symmetric matrices and involve problem-dependent parameters which 
must be carefully chosen to ensure convergence to an accurate solution. For instance, in the 
penalty function formulation the penalty parameter influences the extent to which continuity is 
satisfied and the formations based on the Galerkin approach often require the use of upwinding 
to suppress spurious oscillations in the computed solution. 

Many published finite element solutions for fluid flow problems consider only isothermal 
flow conditions where the energy equation is not included in the formulation. In this case 
the effects of heat generation by viscous dissipation (important in highly viscous polymer 
flows for example) and heat exchange with flow boundaries are not taken into account. Even 
in the formulations of non-isothermal fluid flow problems, often the energy equation is 
considered to be decoupled from the continuity and momentum equations and is solved 
separately. However, in the general case of non-isothermal fluid flow where one or more of the 
fluid transport properties are dependent on temperature, the continuity, momentum and energy 
equations are fully coupled and must be solved simultaneously to obtain accurate solutions for 
the velocity, pressure and temperature fields. This represents a difficult problem considering the 

convection4iffusion'6 and phase change problems. 
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non-linear character of the momentum, energy and constitutive (for non-Newtonian viscosity) 
equations. 

In this paper the least squares formulation procedure is combined with the p-version 
finite element approximation to produce a general framework for the solution of two-dimen- 
sional, steady state, incompressible flow problems involving inelastic non-Newtonian fluids 
which can be described by the power-law model. Formulations for both isothermal and 
non-isothermal fluid flows are considered. For the non-isothermal case the energy equation 
is solved simultaneously with the other equations so that non-isothermal flow problems 
involving temperature-dependent transport properties can be solved. The use of the p-version 
element approximation in the least squares finite element method is an important aspect 
of the present formulation. It has been demonstrated that the p-version-based finite element 
formulations possess superior convergence characteristics to the h-version-based elements." 
The present formulation, when combined with Newton's method with a line search, produces 
symmetric matrices even though the differential equations describing the flow are non- 
linear. 

A summary of the formulations for both isothermal and non-isothermal non-Newtonian 
fluid flow is presented in the following sections. In addition, the effect of two different 
non-dimensional forms of the equations of fluid motion on the convergence behaviour of 
Newton's method is investigated. Three numerical examples are presented (fully developed 
flow between parallel plates, a 2: 1 symmetric sudden expansion and a lid-driven cavity) 
to demonstrate the convergence characteristics and the accuracy of the present formulation 
for isothermal power-law fluids. Two numerical examples (Couette shear flow and a 4: 1 
symmetric sudden contraction) are given for non-isothermal flow. In both of these examples 
(for the non-isothermal case) power-law fluids with a temperature-dependent viscosity are 
considered. Our results for flow between parallel plates and Couette shear flow are compared 
with the analytical s o l ~ t i o n s ~ ~ * ~ ~  and serve as an accuracy check for isothermal and non- 
isothermal cases. 

The 4: 1 symmetric sudden contraction represents a difficult problem and has become a 
standard test problem in computational fluid dynamics for both Newtonian and non-Newtonian 
fluid flow. Two of the more thorough discussions of the characteristics of contraction flow were 
given by Boger3'*'' for an axisymmetric geometry. The majority of the published finite element 
solutions for this problem consider only isothermal conditions. Mitsoulis and V l a c h o p ~ u l o s ~ ~  
studied the effect of the Reynolds number for a 10: 1 planar contraction using the Galerkin 
method. Reddy et report results for a 4: 1 contraction involving non-Newtonian fluids 
using the penalty finite element method. Crochet et discuss both the Galerkin and penalty 
finite element methods for generalized Newtonian fluids and present results for the 4: 1 
contraction problem. Hawken et aL3' used a Taylor-Galerkin fractional step method to obtain 
the steady state solution for incompressible flow in 2: 1 and 4 :  1 contractions. Durst et give 
experimental results for both 2 : 1 and 4 : 1 contractions. 

Perhaps the first to apply the finite element method to the non-isothermal flow in a 4: 1 
contraction were Douglas and R~ylance .~ '  In their work the effect of viscous dissipation 
on the temperature field of a Newtonian fluid was studied. The Galerkin weighted residual 
method with upwinding (for high Peclet numbers) was used to solve the decoupled energy 
equation. Mitsoulis and Vlachopoulos38 also used the Galerkin method with upwinding to 
study viscous dissipation in the creeping flow of Newtonian fluids with a temperature- 
dependent viscosity and power-law fluids without a temperature-dependent viscosity for a 10 : 1 
contraction. Tanguy and ~ o - w o r k e r s ~ ~ ~ ~ ~  used an augmented Lagrangian formulation to study 
the non-isothermal flow of a Carreau-A fluid in a 1 O : l  contraction. In both of these last two 
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studies the energy equation was handled separately from the other equations describing the fluid 
motion and coupling of the energy equation was accomplished in a cyclic manner. 

In this paper we present a p-version least squares finite element formulation for the 
non-isothermal flow of generalized Newtonian fluids with a temperature-dependent viscosity 
and thermal conductivity. The isothermal nowNewtonian fluid flow can be treated as a special 
case in which the energy equation is absent and thus the non-Newtonian viscosity is not a 
function of temperature. The non-isothermal conditions can be caused by either viscous 
dissipation or heat exchange with the flow boundaries or both. The Reynolds number in all 
numerical examples was chosen so that both convection and diffusion terms were important. 
As will be demonstrated, upwinding techniques and 'reduced' integration methods are not 
required in the present formulation to obtain accurate solutions for the velocity, pressure and 
temperature fields. In addition, the energy equation is solved simultaneously with the other 
equations. 

LEAST SQUARES FINITE ELEMENT FORMULATION 
(GENERAL DERIVATION) 

Full details of the least squares finite element formulation (LSFEF) procedure for a system 
of non-linear differential equations and the solution method have been presented by Win- 
terscheidt and Surana.' Here we present a brief summary of the pertinent equations without 
derivations. 

For a system of N differential equations and a discretization with N E  elements the total error 
functional I can be written as the sum of the error functionals I' for the elements: 

NE NE N 
I = 1 l e  = 2 2 [ ( E f ) 2  dR, 

where Ef, i = 1, 2, . . . , N ,  are the errors which result when the finite element approximation to 
the true solution is substituted into the differential equations. In the LSFEF we minimize the 
total error functional given by (l), which yields 

N E  81' NE NE N 
- - - = { g } =  c -- - 2 {g'} = 2 c I { ^ E r b : d Q =  {0}, (2) 

ar 
a { 4  e = l  a{d'> e = l  e = l  i = l  d{6'} 

where ( 6 )  is the vector of nodal degrees of freedom for the entire discretization and (6') 
are the nodal degrees of freedom for an element e. Thus least squares minimization leads to 
finding a ( 6 )  which makes {g} a null vector. Since { g }  is a non-linear function of {a}, we expand 
{g} in a Taylor series about a starting vector (6 , )  and retain only linear terms in {AS}, which 
yields 

where {He} is the element Hessian matrix and is given by 
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The improved value of the solution is obtained using 

( 6 )  = (6,) + a(A6) .  ( 5 )  

The scalar a is selected to minimize I. This procedure is referred to as Newton's method with 
a line search. In the present work we use (6 , )  = (0) and u = 1 for the first iteration; the line 
search is used for subsequent iterations. Numerical values of [Hq are calculated without the 
second term in the integrand of [ H e ] ,  This improves the convergence behaviour of Newton's 
method. Ease of programming and computational efficiency are other advantages when this 
term is deleted.' A detailed discussion of the line search and the necessary and sufficient 
conditions for minima of I have been given by Winterscheidt and Surana' and are not presented 
here for the sake of brevity. 

In the following we present a derivation and the pertinent details of the p-version least squares 
finite element formulation for non-isothermal non-Newtonian fluid flow for power-law fluids 
where the viscosity and the thermal conductivities are temperature-dependent. Details of the 
formulation for the isothermal case can be obtained as a special case. 

EQUATIONS OF FLUID MOTION (NON-ISOTHERMAL CASE) 

The continuity, momentum, constitutive and energy equations for the steady-state, two- 
dimensional incompressible flow of a generalized Newtonian fluid are given by 

aa ao - + - = o ,  aa a j  

A aa 
aa r*,% - 21,- = 0, 

A a; aa 
5*xy - q, - + - = 0, (a$ a) 

, a; t,, = 2qv - = 0, 
J j  3qag + o$) - @ + 2) - [L(g) + iXY(@ aa + %) a; + ?,)!(;)I = 0, 

In this study the fluid density fi and the heat capacity ep are considered to be constant. In 
addition, the fluid is considered to be isotropic with a constant thermal conductivity and 
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hence f,. = 0 and f,, = fyy .  The generalized Newtonian viscosity 4, depends on the local 
shear rate (flow field parameters) and temperature of the fluid. The subscript ‘v’ is used to 
distinguish the generalized Newtonian viscosity from the natural co-ordinate direction r,~ 
discussed later. 

The manner in which the constitutive equations in (6) are written is of the same general form 
as those for a Newtonian fluid. It is for this reason that relationships of this form are called 
generalized Newtonian fluid models. The specific form of 4, is chosen to describe the physical 
behaviour of the fluid of interest. The simplest is the Newtonian model where 4, is constant for 
the entire flow field. There are many non-Newtonian viscosity models which are used to describe 
more complicated fluid behaviour such as shear thinning, shear thickening and e l a ~ t i c i t y . ~ l * ~ ~  In 
the following we discuss the inelastic power-law model. 

Of the many generalized Newtonian models, the power-law model is the most commonly 
used. For this reason we use it here to describe the shear rate dependence of ij,; however, any 
other generalized Newtonian model could also be used, such as the Carreau-Yasuda or Bingham 
plastic m ~ d e l s . ~ ” ~ ~  The power-law model is given by 

(7) 4, = h ( f 2 ) ( n -  1)/2, 

where h is the fluid consistency, f2 is the second invariant of the rate-of-strain tensor and n is 
the power-law index. For values of n between zero and unity the viscosity is shear thinning, for 
n > 1 the viscosity is shear thickening and for n = 1 equation (7) reduces to the Newtonian 
viscosity model with hi = j?. 

For two-dimensional flow the explicit form of f2 is given by 

The temperature dependence of the viscosity is usually described by considering the temperature 
dependence of h and n separately. For almost all fluids the temperature dependence of n is small 
compared with that of hi4’ and will be neglected in this work. The particular choice of the 
relationship used to describe the temperature dependence of rit is problem-dependent and will 
be discussed in the numerical examples section. 

DIMENSIONLESS FORM OF THE EQUATIONS OF FLUID MOTION AND 
HEAT TRANSFER 

In order to build a general framework for the solution of the equations of motion and heat 
transfer (6) using the p-version LSFEF, it is desirable to cast equations (6)-(8) into dimensionless 
form. The choice of the dimensionless form of these equations has a dramatic effect on the 
convergence of the iterative process used for obtaining the numerical solution (see Example 2). 

Two different non-dimensional forms of equations (6)-(8) are considered. These two forms 
arise as a result of the choice of the characteristic scale for the stresses. If the characteristic 
viscous stress (qoVo/L) is chosen to scale the stresses, the Reynolds number appears in the 
momentum equations. If the characteristic kinetic energy (po V @  is used to scale the stresses, 
the Reynolds number appears in the stress equations. As will be demonstrated later, the first 
choice has undesirable effects which lead to non-convergence of the iterative solution procedure 
or convergence to spurious solutions for a variety of problems. 

In the present study we scale the stresses using the characteristic kinetic energy. The following 
dimensionless variables are used: 
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P - Po f- To 
p = -  T=-  

POVi ' TI - To' 

z*YV z,, = -, T x x  z*XY 
T x x  = -, zxy = - , 

70  TO TO 

4 X  q =>, B 
q x = - ,  

4 0  40 

where T~ = poVi  and qo = ko(Tl - To)/L. 
Using these variables, equations (6) can be transformed into 

au au 
ax  ay  - + - = o ,  

au au ap (;; a;;) 
ax ay ax 

ax a y  a y  ( a x  :;)- 

zxy - v"(; + ;;) = 0, 

u - + u - + - -  -+- =o,  
au  ap a?,,+ -o, u - + u - + - -  - 

aU 
ax 

zxx - 2r], - = 0, 

au 
aY 

zyy  - 2V" - = 0, 

(u g + 0 Z )  - & rz + 2) - 2 [...(E) + z x y g  + ;) + T y y ( 3 ]  = 0, 

aT aT 

aY 
aT aT 
aY x y  ax  

ax k x ,  - = 0, 4 x  - k x x  - - 

qy  - k,, ~ - k - = 0, 

Po v; -nL"  
Re,, = 

m0 

p r n = p ( t )  C p p 0  00 n - l  9 

k0 

mou:+ 
Br,, = 

ko( Tl - To)Ln - ' 
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where Re,, Pr,, and Br, are the Reynolds, Prandtl and Brinkman numbers respectively for a 
power-law fluid.4l The dimensionless forms of the equations describing the power-law viscosity 
are 

LSFEF OF THE NON-DIMENSIONAL EQUATIONS OF MOTION 
AND HEAT TRANSFER 

In this formulation P ,  u, u, T,, zXy, zYy, T, qx and qy are considered to be the dependent or field 
variables. By considering the stresses and heat fluxes as dependent variables, we obtain a set of 
coupled first-order non-linear partial differential equations, (lo), which permit the use of Co 
approximation functions. Generally P, u, u and T are called primary variables and rxx, T ~ ~ ,  tYy, 

qx and qy are called auxiliary variables. 

Element approximation 

If we consider the same order of approximation for all the field variables, then we can write 

where O is the field variable, [ N ]  is the hierarchical approximation function matrix and {O} are 
the hierarchical nodal degrees of freedom for the field variable CP. By letting O = P,  u, u, T,,, 
T~,,, zYy, T, qx ,  and q,,, we can write the element approximation for each of the nine dependent 
variables. For example, Ph = [ N ] { P } ,  uh = [N]{u}, etc. In the present work we consider a 
nine-node quadrilateral element with curved sides. The element is mapped on to a two-unit 
square in the natural co-ordinate space (, rj (Figure 1). The hierarchical approximation functions 
and nodal variables are constructed in the natural co-ordinate space g, q. Details of this 
procedure can be found in References 1 and 21 and are omitted here for the sake of brevity. 

-2- 

Figure 1. Nine node p-version finite element 
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When the finite element approximations Ph, uh, oh, etc. are substituted into the dimensionless 
forms of the equations of motion, the resulting errors can be written as 

aUh avh 
E ' , = - + - ,  

ax ay 

h auh 
ax 

EZ = T,, - 2qV - , 

E; = (uh ax aTh + vh -) dTh -- 1 (g + 2) 
a y  Re, Pr, 

h aTh a Th 
ax aY 

h aTh a Th 

dY 

E', = 4,  - k,, - - k,, -, 

E$ = qy - k, __ - k, ax. 
For the second invariant of the rate-of-strain tensor we have 

(13) 

In addition to the errors given by (13), the LSFEF presented in the previous section requires 
expressions for the derivatives of the errors with respect to the {6e)-vector. In this case, if we 
choose 

{,,IT = W>'l {UIT, {U>T, { L I T 9  b x y I T 1  {TyyIT9 {TIT, {4JT, {4,)7,  (15) 

then 

Using (12) with 0 = P,  u, u, T~,, T,,, T~,, T, qx and qy and the equations for EP, i = 1,2,. . . ,9 ,  (13), 
the required expressions in (16) can be obtained easily as 
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The derivatives of 7, with respect to { u } ,  {u} and { T }  appearing in the expressions for the 
partial derivatives of EP with respect to (6') can be easily obtained using (11) and (14) as 

where 

{ ~ ar; ] - - 4 -  auh [a,]. - + 2 - + -  ( ;yh auh)[  - a N ] .  , 
a w  ax ax a x  ay 

{ ~ ar; } =4-  auh [""IT - + 2 - + -  auh)[ - a,]. , 
a w  aY aY ax ax 

We also note that 

akij  aT akij  
aT a p )  aT 

- [NIT, i ,  j = x ,  y .  

Knowing the explicit forms of ki j  = k,,{T), ak i j /aT can be easily computed. 
Note that equations (13), (24) and (25) are written for the general case of an anisotropic fluid 

with temperature-dependent thermal conductivities. In the numerical examples we assume 
k,, = 0 and k,, = k,, and we consider the thermal conductivity to be independent of temperature. 

The errors given by equation (13) and the derivatives of the errors with respect to the degrees 
of freedom vector {a'} given by equations (17H25) are used to compute {g'} defined in equation 
(2) and the Hessian matrix [ H e ]  defined in equation (4). The numerical values of the integrals 
are calculated exactly using Gaussian quadrature with a '2p + 1 integration rule' in both ( and 
q natural co-ordinate directions, where p is the order of the polynomial approximation. 

Remarks 

The importance of the choice of the non-dimensional form can be examined more closely by 
considering its effect on the LSFEF. In the least squares process we minimize the sum of squares 
of the errors given by equation (1). In this process the relative importance of the individual 
equations can be altered through the use of weight f a ~ t o r s . ~ , ~ ~ . ~ ~  If one or more equations in 
the set are weighted more heavily than the others, the minimization process is forced to satisfy 
these equations at the expense of the rest. The non-dimensional forms of the constitutive 
equations resulting from the two choices of the characteristic scale for the stresses represent the 
same equations but with different weight factors. 

The values of the errors resulting from the stress equations using the characteristic viscous 
stress scale are always a factor of Ren times greater than those resulting from the characteristic 
kinetic energy scale. This means that for a given problem, as the Reynolds number is increased, 
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the relative weighting on the stress equations increases when the characteristic viscous stress 
scale is used. As the Reynolds number is increased, the magnitude of the velocity gradients 
increases throughout the flow field. When the characteristic kinetic energy is used to scale the 
stresses, the ratio of the magnitude of the velocity gradients and the Reynolds number (which 
appears in the stress equations for this scale) remains approximately constant. This has the effect 
of maintaining a constant weight factor for the stress equations as the Reynolds number is 
changed. In the present study the increased weighting on the stress equations associated with 
the characteristic viscous stress scale was found to be very undesirable, leading to non- 
convergence or convergence to spurious solutions for a variety of problems even at low to 
moderate Reynolds numbers. A numerical example is presented in the next section to illustrate 
this point. 

With these observations in mind, the generalization can be made that when using non- 
dimensionalized equations in the least squares process, the non-dimensional form should be 
chosen such that the relative weight of each equation is not strongly affected by the value of 
any non-dimensional parameter contained in the equations. 

LSFEF for isothermal case 

For isothermal flow the energy equation and the heat flux equations do not participate and 
thus for the element error equations in (13) we have E i ,  i = 1, 2,.  . . ,6 ,  and the temperature T 
and heat fluxes q, and qy are no longer field variables. For this case the element nodal degrees 
of freedom vector reduces to = [{P}', { u } ~ ,  { v } ~ ,  {7xx}T ,  {7xy}T, { T ~ ~ } ~ ] .  Naturally in this 
case the viscosity (q,) is not a function of temperature. Thus rn in equation (1 1) is not a function 
of temperature. 

NUMERICAL EXAMPLES 

In this section numerical examples are presented for isothermal as well as non-isothermal 
non-Newtonian fluid flow using the power-law model for viscosity to demonstrate the accuracy 
and convergence characteristics of the present p-version least squares finite element formulation. 
The numerical examples for isothermal flow consist of fully developed flow between parallel 
plates, flow in a 2 :  1 symmetric sudden expansion and flow in a lid-driven cavity. For 
non-isothermal flow the numerical examples include Couette shear flow and flow in a 4: 1 
symmetric sudden contraction. The system of algebraic equations in (3) is solved using the 
wavefront method.' 

Example 1. Fully developed Bow between parallel plates (isothermal Bow) 

The fully developed flow of a power-law fluid, unlike that of a Newtonian fluid, represents a 
non-linear problem. The degree of non-linearity increases as the power-law index deviates from 
unity. Figure 2 shows the region modelled using one and three p-version elements. Because of 
symmetry, we need only consider the upper (or lower) half of the cross-section. 

The analytical solution for the velocity profile is given by 

Figure 3 shows a plot of the error functional I versus degrees of freedom (DOF) when the 
three-element model was used for n = 0.75 and 1.50. The solutions for n = 1.0 and 0.5 match 
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(4 (b) 
Figure 2. Schematic and finite element models for pressure-driven fully developed flow (Example I):  (a) one-element 

model: (b) three-element model 

l o - '  4 
Example 1: Fully Developed flow 

A n = 0.75 
0 n - 1.50 

Figure 3. p-Convergence of the error functional I for n = 0.75 and 1.5-three-element model (Example 1) 
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the analytical solution exactly and were obtained using a one-element model with p = 2 and 3 
respectively. For n < 0.5 and n > 1-5 a simple continuation procedure in the power-law index 
was needed. A uniform mesh consisting of three elements was adequate. For n < 0 5  the 
converged solution at n = 0 5  was used as the starting solution, whereas for n > 1.5 the converged 
solution at n = 1.5 was used as the starting solution. No more than two steps in n were required 
to obtain an accurate solution. 

A continuation method in the power-law index is required for extreme values of n, because 
Newton’s solution procedure requires a starting solution within a small neighbourhood of the 
true solution to ensure convergence. For n < 0.5 and n > 1.5 the initial starting solution 
((6,) = (0) and n = 1.0) is far from being within a small neighbourhood of the true solution. 
However, for 0.5 I n I 15, (6,) = (0) and n = 1.0 serves as a good starting solution and results 
in satisfactory convergence of Newton’s method. Furthermore, whenever a good starting solution 
was used, the number of iterations required by Newton’s method was always seven or less. This 
was true for all numerical examples presented in this paper. A convergence tolerance of less than 
or equal to lop4 was used for both (g} and I. 

We note that the range of power-law index n for which (6,) = (0) and n = 1.0 serves as a 
good starting solution if the solution is problem-dependent. For Examples 2 and 3, n = 1.0 
served as a good starting solution and continuation in the power-law index was not required. 
The converged velocity profiles obtained from the present formulation show excellent agreement 
with the analytical solution (Figure 4). 

Example 2, A 2:  I symmetric sudden expansion (isothermal pow)  
The flow in a 2:  1 symmetric sudden expansion is characterized by fully developed flow at 

the inlet and exit and a region of recirculation in the corner just after the expansion. Figure 5(a) 
shows a schematic of the problem with the boundary conditions and Figure 5(b) shows a graded 
26 p-version finite element mesh. The element sizes and the mesh details near the corner are 
shown in Figure 5(c). 

The Reynolds number in this case is defined as Re,, = p o u ~ v ~ n ” s ” / o ,  where uavg is the average 
inlet velocity and s is the step height. No-slip conditions were applied at  the walls and symmetry 
conditions of flow were enforced at the centreline by specifying the shear stress and vertical 
velocity to be zero there. A fully developed velocity profile, scaled to represent a unit flow rate, 
was specified at the inlet and the pressure was specified at one node on the centreline at the 
entrance. Conditions of fully developed flow were applied at the exit by specifying rxx = 0 and 
u = 0. 

The finite element mesh was finely graded near the corner because of the sharp gradients of 
velocity and pressure in this region. A Reynolds number of 10 was used in all cases, while the 
power-law index was varied between 0.25 and 1.5. This value of Re, was selected to ensure that 
both sources of non-linearity (convection and viscous terms) were important and to concentrate 
on the changes in the flow behaviour due to changes in n. The 26-element graded mesh shown 
in Figure 5(b) was satisfactory for all values of n. Pesults were computed for a coarse mesh and 
successive mesh refinements were made based on the element error functional values to arrive 
at the present 26-element mesh. Figure 6 shows a plot of the error functional versus DOF for 
various values of n ranging from 0.25 to 1.50 on a log-log scale. The degrees of freedom were 
increased for the fixed 26-element mesh by uniform p-refinement ( p s  = p,, = p) for each element. 
We note that there was a substantial decrease in the error functional when the p-level was 
increased from two to five (647 DOF to 4011 DOF). The solution was essentially converged at 
p-level five for n I 1.0. For n = 1.5 a higher p-level was needed for convergence. We also note 
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Figure 4. Velocity profiles for various values of the power-law index (Example 1 )  

that the rate of convergence was essentially the same for all values of n except 025. For n = 0.25 
the rate of convergence was greater between p-levels three and seven. The number of iterations 
required was less than seven for a convergence tolerance of less than or equal to for both 
{g} and I .  

Figures 7(a)-7(c) show streamline plots for power-law indices of 0.25, 1.0 and 1.5 respectively. 
It can be seen that the size of the vortex and the maximum streamline value in the vortex increase 
as the power-law index is increased. The maximum value of the streamfunction in the vortex 
for the Newtonian flow (Figure 7(b)) was 1.0126, which is very close to the value of 1.0124 
reported by Georgiou et for this problem. The converged horizontal velocity profiles at 
various locations for n = 0.25, 1.0 and 1.25 are shown in Figures 8-10. For this Reynolds number 
x/s = 20 was a sufficient length to obtain fully developed flow at the exit. In Figures 8-10 the 
circles represent the fully developed analytical solution for flow between parallel plates. Our 
calculated exit velocity profiles are in excellent agreement with the analytical solution. Extremely 
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Figure 5. Schematic and finite element model for the 2:  1 symmetric sudden expansion (Example 2): (a) schematic and 
boundary conditions; (b) 26-element graded mesh showing element lengths; (c) finite element mesh details near the comer 

low values of the error functional (of the order of or lower) are an indication of the good 
accuracy of the velocity profiles at other values of x/s as well as the good accuracy of the other 
field variables. 

The skin friction coefficient along the wall (cf = 2 ( ~ , ~ ) ~ ~ , , / p ~ u ~ ~ . J  downstream of the expansion 
is plotted in Figure 11 for various values of n. The initial ‘dip’ in the curves signifies the region 
of recirculation where the flow is directed backwards. The position downstream where cf = 0 is 
the point of reattachment of the flow. Figure 12 is a plot of the reattachment length (x,) as a 
function of the power-law index n. We note that x, decreases as n decreases, which is in agreement 
with results reported by others for similar  problem^.^^*'^ A pressure contour plot for a 
Newtonian flow is given in Figure 13. The location of minimum pressure is on the vertical wall 
very near the corner of the expansion. Pressure contour plots for other values of the power-law 
index in the range 0.25 I n I 1.5 are similar in appearance. 

To demonstrate the importance of the choice of the non-dimensional form of the equations 
of motion, we computed the flow field for n = 1.0 using the characteristic viscous stress to scale 
the stresses and compared the results with those obtained using the characteristic kinetic energy 
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Figure 6. p-Convergence of the error functional I for various values of the power-law index (Example 2) 

scale. From Figure 14, which shows a plot of I versus D O F  on a log-log scale, it is clear that 
the characteristic kinetic energy scale resulted in a greater rate of convergence. The hoizontal 
velocity profiles at various locations for n = 1.0, calculated using the characteristic viscous stress 
scale, are shown in Figure 15. Note that in this case the formulation failed to accurately predict 
the exit velocity profile even when using a higher p-level than that needed to obtain converged 
results with the characteristic kinetic energy scale. It is obvious that the characteristic kinetic 
energy scale, for which the Reynolds number appears in the stress equations, is a better choice. 

Example 3. Lid-driven cavity (isothermal flow) 

The ‘lid-driven’ cavity has become a standard test problem in computational fluid dynamics. 
The problem is characterized by a square cavity in which the driving force for the flow is the 
shear created by the sliding lid. Figure 16 shows a schematic of the cavity with the boundary 
conditions and the finite element discretization. 
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Figure 7. Streamline plots for the 2 :  1 symmetric sudden expansion for power law indices of (a) 0.25, (b) 1.0 and (c) 1.5. 
The maximum streamfunction values in the vortex are 1.00006, 1.0126 and 1.0226 respectively. In all cases Re, = 10 

and -4 2 x 5 5 

The Reynolds number for this problem is defined as Re,, = pou~-"D"/rno,  where u,, is the 
velocity of the lid and D is the dimension of the cavity. The Reynolds number was chosen to 
be 100 and was kept constant, while the value of the power-law index was varied from 0.25 to 
1.5. The 25-element model was found to be adequate for all values of n. This was confirmed by 
further refining the mesh and observing no appreciable change in the error functional or in the 
primary and auxiliary variables. Figure 17 shows plots of the error functional versus DOF for 
n = 0-25 and 1.5. Plots for 025  < n < 1-5 were similar and fell between the graphs for n = 0.25 
and 1.5. The velocities, pressure and auxiliary variables were converged at a p-level of five. The 
number of iterations required was less than seven for a convergence tolerance less than or equal 
to 

Streamline plots are shown in Figures 18(at18(c) for power-law indices of 0.25, 1.0 and 1.5 
respectively. From these plots we note that the position of the main vortex shifts towards the 
upper right corner as the power-law index decreases. Also, the maximum streamline value in 
the main and corner vortices decreases as n decreases. The streamline pattern for n = 1.0 (Figure 
18(b)) agrees closely with the results reported by Schneider and Raw.46 The converged horizontal 
velocity (at a p-level of seven) along the vertical centreline of the cavity is plotted in Figure 19 
for various values of n. The solid curve represents the solution for a Newtonian fluid (n = 1.0) 

for both { g }  and I for all cases presented here. 
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Figure 8. Converged horizontal velocity (u) profiles at various cross-sections for n = 0.25 (Example 2 )  
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Figure 9. Converged horizontal velocity (u)  profiles at various cross-sections for n = 1.0 (Example 2) 
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Figure 10. Converged horizontal velocity (u) profiles at various cross-sections for n = 1.25 (Example 2) 

and is compared with results published by Gartling22 and Ghia et al.47 It can be seen that our 
calculated solution shows good agreement with these published results. Figure 20 shows the 
converged vertical velocity profiles along the horizontal centreline of the cavity. As the value of 
n decreases, the velocity profile becomes flatter, indicating a decreasing circulation in the bottom 
half of the cavity. 

Example 4. Couette shear flow (non-isothermal flow) 

This well-known problem is used to verify the accuracy of the current formulation, with 
particular interest in the solution of the fully coupled energy equation. We consider non- 
isothermal Newtonian and non-Newtonian flow between parallel walls, with one wall fixed and 
the other moving with constant unit velocity in the x-direction. A schematic of the problem 
showing the boundary conditions and a three-element uniform mesh is presented in Figure 21. 
No-slip conditions are applied at the walls and a zero pressure drop is specified in the flow 
direction. The walls are held at zero temperature, with heat being generated in the flow by 
viscous dissipation. 

For both Newtonian and non-Newtonian cases the viscosity is considered to be temperature- 
dependent and the Brinkman number, which scales the viscous dissipation term, is selected to 
be high enough to cause significant changes in the viscosity. The temperature dependence of the 
viscosity for a power-law fluid is usually described by considering the temperature dependence 
of hi and n separately, but since the temperature dependence of n is negligible for most fluids, 
only the change in & with temperature will be considered. In this example we consider the 
following relation for 
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Figure 11. Skin friction coefficient (cf) along the wall following the expansion for various values of the power-law index 
(Example 2) 

+ = I ~ ~ ~ ~ - A ( ~ - T ~ ) / ( T , - T ~ )  9 (29) 

where TI and To are reference temperatures, tho is the value of the consistency at  temperature 
To and A is the reciprocal characteristic temperature difference of the fluid. The dimensionless 
form of equation (29) is 

(30) m = e-AT 

and thus the derivative of rn with respect to T can be written as 

(drn/dT) = -Ae-AT. (31) 

The LSFEF of the non-dimensional equations of motion can now be completed by using 
equations (30) and (31) in equations (26). 
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Figure 12. Reattachment length (x,) as a function of the power-law index (Example 2) 

Figure 13. Pressure contour plot for the 2 :  1 symmetric sudden expansion for n = 1.0, Re,, = 10 and -4 Q x Q 5 

Here we present results for two cases: case A, a Newtonian fluid with A = 1.0 and Br = 100.0; 
case B, a power-law fluid (n = 0.25) with A = 0.1 and Br, = 25.0. Since the dependent variables 
for this problem do not change in the x-direction, the p-level in the <-direction is kept fixed at 
a value of two, while the p-level in the q-direction (y-direction) is varied. Figure 22 shows the 
p-convergence of the error functional for both cases A and B. We note a smooth monotonic 
behaviour for both Newtonian and power-law fluids with approximately the same convergence 
rate. Figures 23 and 24 show the converged velocity profiles and temperature distributions 
respectively for cases A and B. In both figures the analytical solution published by Turian and 
Bird28*29 is given for comparison. Our results show excellent agreement with the analytical 
solution. The maximum number of iterations was less than seven for a convergence tolerance 
of lo-’ for both { g }  and I. 

The effect of the temperature-dependent viscosity can be clearly seen by observing the 
departure of the velocity profiles from a straight line in Figure 23. A straight line velocity profile 
would result if the flow were isothermal or if the viscosity was considered to be independent of 
temperature. 
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Figure 14. Comparison of the p-convergence characteristics for the two non-dimensional forms (Example 2) 

Example 5.  A 4 : 1 symmetric sudden contraction (non-isothermalJow) 

The numerical simulation of the flow in a 4 :  1 contraction represents a relatively difficult 
benchmark problem. Here we examine the accuracy and convergence characteristics of the 
current formulation for this problem by simulating the non-isothermal flow of Newtonian and 
power-law fluids with a temperature-dependent viscosity. Viscous dissipation is the source of 
heat generation. 

Figure 25(a) shows a schematic of the problem with the boundary conditions and Figure 25(b) 
shows a graded 132 p-version finite element mesh. No-slip conditions and zero temperature were 
specified along the wall. Along the centreline the vertical velocity, shear stress and heat flux in 
the y-direction were all set to zero. The inlet conditions were specified to represent fully developed 
flow between parallel plates with a unit flow rate and temperature-independent viscosity. The 
analytical expressions for the velocity and temperature profiles of a power-law fluid under these 
conditions are 
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Figure 15. Converged horizontal velocity (u) profiles for n = 1.0 using the ‘characteristic viscous stress’ to scale the 
stresses (Example 2) 

U =  
V =  

u = v = o  

Figure 16. Graded 25-element model for the lid-driven cavity showing boundary conditions and element lengths 
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Figure 17. p-Convergence of the error functional 1 for n = 0.25 and 1.50 (Example 3) 

and 

where /.? is the channel half-width. No boundary conditions were specified at  the exit. 
This 132-element model was arrived at by starting with a coarse model and then systematically 

refining the mesh based on the error functional I' for the elements. At each stage the 
p-convergence of the mesh was examined and refinement was made in the areas containing 
elements with relatively high values of the element error functional. The solutions obtained using 
the 132-element mesh were sufficiently accurate when the p-level was increased to four or five. 
Increasing the number of elements beyond 132 or the p-level above five did not significantly 
improve the results for any of the wide range of flow conditions examined here. The smallest 
element length in this mesh was 0.02 for elements located near the corner at  the contraction. A 
maximum of seven iterations were needed for a convergence tolerance of or less for both 
{g} and I .  

The Reynolds number for this problem is defined as Re,, = po~~v;"nh"/rno, where p o  and 
mo are evaluated at the wall temperature and h is the half-width of the contraction (for a 
Newtonian fluid n = 1.0 and m, = po). The value of Re, is held constant at 10 in order 
to concentrate on the effects of the other dimensionless parameters. This particular value 
for Re, is chosen to ensure that both convection and diffusion terms are significant. The 
dimensionless temperature is defined as T = ( F  - To)/(Tmax,c - To), where T,,,,, is the maxi- 
mum temperature occurring in fully developed channel flow for a Newtonian fluid with- 
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Figure 18. Streamline plots for the driven cavity problem for power-law indices of (a) 0.25, (b) 1.0 and (c) 1.5. The 
numbers represent the maximum streamline values of the vortex. Re, = 100 

out a temperature-dependent viscosity and for Br = 1.0. The analytical expression for 
L a x , ,  is 

L a x . ,  = B r 4 a x . s 3 .  (34)  
For a unit flow rate in the upper half of the contraction, u,,,,, = 15, and with Br = 1.0, 
7',',ax.c = 0.75. The Brinkman number, which determines the importance of viscous dissipation, 
is defined as Br, = mougl,f'/koh"-l(T,a,~c - To). 

The Peclet number represents the ratio of heat transfer by convection to that by conduction 
and was defined as Pe = pOCpouavgh/kO. The values of Br,,  Pen,  n (power-law index) and A 
(characteristic temperature difference of the fluid, equation (32) )  were all varied over wide ranges 
in order to examine the characteristics of the current formulation. 
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Figure 19. Converged horizontal velocity (u) profiles at x = 0.5 for various values of the power-law index (Example 3) 
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Figure 20. Converged vertical velocity ( v )  profiles at y = 0.5 for various values of the power-law index (Example 3) 
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Figure 22. p-Convergence of the error functional I for cases A and B (Example 4) 
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Figure 23. Converged horizontal velocity profiles for cases A and B. Symbols represent the analytical solution (Example 4) 

In this study the p-levels in the 5- and q-directions were increased uniformly for all elements. 
Figure 26 shows two representative plots of the error functional versus DOF. Case A is for a 
Newtonian fluid and case B is for a power law fluid, both with a temperature-dependent viscosity 
(defined by equation (30)). Note the rapid improvement in the error functional with increasing 
p-level. At a p-level of four or five the solution is essentially converged, with values of the 
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Figure 24. Converged temperature profiles for cases A and B. Symbols represent the analytical solution (Example 4) 
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Figure 25. Schematic and finite element model of the 4:  1 symmetric sudden contraction: (a) schematic and boundary 
conditions; (b) graded 132 p-version finite element mesh (Example 5) 

error functional of the order of Similar p-convergence trends were observed for all other 
flow conditions examined here. 

The solutions obtained for Newtonian fluid flow are described first. Figure 27 is a representa- 
tive streamline plot (the plots for all Newtonian cases were essentially similar in appearance) 
showing a region of recirculation in the upper corner. This pattern is very similar to results 
published by numerous other a ~ t h o r s . ~ ~ * ~ ~ * ~ ~ . ~ ~ . ~ ~  The flow in the inlet region is essentially 
isothermal (illustrated later) in all cases, so that the value of A had little effect on the velocity 
field there. Changes in the temperature field with changes in Br, A and Pe are much more 
significant. Figures 28(a)-28(d) show isotherms for Peclet numbers of 1, 10, 100 and lo00 
respectively, while Br and A are held constant. From these isotherms we note the influence of 
increased heat transfer due to convection (as compared with conduction) on the shape of the 
contours and the maximum temperature in the flow field. From Figure 28(a) we note that there 
is a local ‘hot spot’ on the centreline just below the corner at the contraction. This ‘hot spot’ 
has also been observed by Douglas and R ~ y l a n c e ~ ~  and Mitsoulis and V l a c h o p o ~ l o s ~ ~  for low 
Peclet numbers. This ‘hot spot’ disappears as Pe increases. It is worth noting that the flow at 
the exit is fully developed only for Pe = 1. For higher Pe the length of the exit region would 
have to be extended in order to reach the fully developed flow state. 

The effect of the temperature-dependent viscosity on the centreline temperature is demon- 
strated in Figures 29 and 30. These figures show the centreline temperatures for four different 
Peclet numbers and A = 0 and 0.1. The results in Figure 29 are for a Brinkman number Br = 1 
and those in Figure 30 are for Br = 10. These figures show that the differences in centreline 
temperatures between fluids with a temperature-independent viscosity ( A  = 0) and those with a 
temperature-dependent viscosity ( A  = 0.1) increases when the relative importance of viscous 
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Figure 26. p-Convergence of the error functional I for a Newtonian fluid (case A) and a power-law fluid (case B) 
(Example 5) 

Figure 27. Streamline plot for the flow of a Newtonian fluid in a 4 :  1 symmetric sudden contraction (Re = 10, Pe = 100, 
Br = 1, A = 0.1) (Example 5) 

dissipation increases. We also note that these curves are smooth and do not contain the spurious 
oscillations which often result in solutions obtained from Galerkin-based formulations without 
the use of upwinding. 

The results obtained for power-law fluids (shear thinning) are not drastically different from 
the results for a Newtonian fluid. We have already seen from Figure 26 that the convergence 
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Figure 28. Isotherm plots for the flow of a Newtonian fluid in a 4: 1 symmetric sudden contraction: (a) Pe = 1; 
(b) Pe = 10; (c) Pe = 100; (d) Pe = 1OOO. In all cases Re = 10, Br = 1 and A = 0.1 (Example 5) 

characteristics of the two fluids are very similar. Figure 31 shows streamline and isotherm plots 
for a shear-thinning fluid with a power-law index of 0.25. Comparing this streamline pattern 
with the pattern for a Newtonian fluid given in Figure 27, it can be seen that the two are very 
similar except that the region of recirculation which is present for the Newtonian fluid is absent 
for the shear-thinning fluid. This observation has also been reported previ~usly.~' 

CONCLUSIONS 

A true (free of approximations and assumptions) p-version least squares finite element formula- 
tion has been presented for the two-dimensional, incompressible, steady state flow of a power-law 
fluid under isothermal or non-isothermal conditions. In the development of the least squares 
error functional, actual non-linear partial differential equations were utilized without linearizing 
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Figure 29. Centreline temperature versus horizontal distance for a Newtonian fluid with Re = 10, Br = 1 and for four 
different values of Pe. The solid curves are for A = 0 and the dashed curves are for A = 0.1 (Example 5) 

the non-linear terms or introducing any other approximations. Newton’s method with a line 
search was utilized to find the solution which satisfies the conditions resulting from the least 
squares minimization principle. Five numerical examples are presented for isothermal and 
non-isothermal conditions. The computed solutions in these examples show excellent agreement 
with analytical solutions and with solutions reported in the literature for a wide range of 
power-law indices (0.25 < n < 1.5). 

The particular choice of the non-dimensional form of the equations of fluid motion was found 
to be very important with regard to solution accuracy and efficiency of the iterative solution 
procedure. A generalization can be made that when using non-dimensional equaions in the 
LSFEF, the non-dimensional form should be chosen such that the relative weight of each 
equation is not strongly affected by the value of any dimensionless parameter contained in the 
equations. The results of this work showed that when the Reynolds number appeared in the 
stress equations (instead of the momentum equations), better p-convergence was attained and 
the solution procedure required no more than seven iterations for the range of power-law indices 
reported here. 

For the non-isothermal case the viscosity and thermal conductivities were functions of 
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Figure 30. Centreline temperature versus horizontal distance for a Newtonian fluid with Re = 10, Br = 10 and for four 
different values of Pe. The solid curves are for A = 0 and the dashed curves are for A = 01 (Example 5) 
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Figure 31. Flow of a power-law fluid (n  = 0.25) in a 4 :  1 symmetric sudden contraction ( R e  = 10, Pe = 100, Br = I, 
A = 0.1): (a) streamline plot; (b) isotherm plot (Example 5) 
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temperature and thus the energy equation was fully coupled with the continuity and momentum 
equations. The least squares finite element procedure automatically provides a measure of 
solution error in the form of the error functional. The element error functional values are ideal 
for adaptive h- or p-refinements and in fact have been used in obtaining the final graded meshes 
presented in this paper for the numerical examples. The total error functional for the entire 
model is a monotonic function of the total degrees of freedom as the p-levels are increased for 
a fixed mesh. 

In summary, the p-version least squares formulation presented here using the ‘ 2 p  + 1 
integration rule’ produces excellent results for all values of the power-law index in the range 
0.25 I n 5 1.5, has excellent convergence characteristics and provides a general and accurate 
numerical simulation tool for two-dimensional, isothermal and non-isothermal, incompressible, 
steady state, generalized Newtonian fluid flow. 
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